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Abstract

In this paper, the vector radiative transfer equation is derived by means
of the vector integral Foldy equations describing the electromagnetic scat-
tering by a group of particles. By assuming that in a discrete random
medium the positions of the particles are statistically independent and
by applying the Twersky approximation to the order-of-scattering expan-
sion of the total field, we derive the Dyson equation for the coherent
field and the ladder approximated Bethe–Salpeter equation for the dyadic
correlation function. Then, under the far-field assumption for sparsely
distributed particles, the Dyson equation is reduced to the Foldy inte-
gral equation for the coherent field, while the iterated solution of the
Bethe–Salpeter equation ultimately yields the vector radiative transfer
equation.
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1 Introduction
In the first part of this series [1], we derived the vector radiative transfer equation
for a discrete random layer with non-scattering boundaries by invoking at the
very outset the algebraic far-field approximation to the Foldy equations [2, 3, 4]
applicable to sparsely distributed particles. In other words, we assumed from
the very beginning that each particle is located in the far zones of all the other
particles and that the observation point is also located in the far zone of any
particle. The coherent field and the vector radiative transfer equation were
obtained by applying the Twersky approximation [5] to the far-field order-of-
scattering expansion of the total field and by taking the configuration average of
the resulting equations under the assumption that the positions of the particles
are statistically independent.

In this paper we analyze how the use of the far-field assumption in the deriva-
tion of the radiative transfer equation can we delayed as far as possible. We
therefore use the exact integral Foldy equations of electromagnetic scattering
[6, 7, 8] formulated in terms of the transition dyadic of an individual particle.
For a discrete random medium with uncorrelated particle positions, these are
employed in conjunction with the Twersky approximation to derive the Dyson
equation for the coherent field and the ladder-approximated Bethe–Salpeter
equation for the dyadic correlation function. The coherent field and the vec-
tor radiative transfer equation are then obtained by simplifying the Dyson and
Bethe–Salpeter equations via the far-field assumption. The final section dis-
cusses the similarities of and differences between the two approaches to arrive
at the same radiative transfer equation.

We have tried to make this paper maximally self-contained while keeping its
size manageable. To this end, we assume that the reader is already familiar with
Ref. [1] and use the same conceptual base and notation. Neither Ref. [1] nor this
second part are intended for a complete novice in the field of electromagnetic
scattering; for the basics, we refer to the tutorial [8] and introductory text [9].

2 Dyson and Bethe–Salpeter equations
We consider the same scattering geometry as in Ref. [1]. More precisely, a
group of N identical, homogeneous, nonmagnetic particles with permittivity
ε2 are placed in a lossless, homogeneous, nonmagnetic, and isotropic medium
with permittivity ε1 and permeability µ0. The wavenumbers in the background
medium and the particle are k1 = ω

√
ε1µ0 and k2 = ω

√
ε2µ0, respectively,

where ω is the angular frequency. The particles are centered at R1, R2, ...,
RN , the origins of the particles are confined to a macroscopically plane-parallel
layer with non-scattering plane boundaries. The domain occupied by particle i
is denoted by Di, the domain populated by the particles is denoted by D, and
the particulate medium is characterized by the particle number concentration
n0. The particles have the same orientation, and the coordinate systems of the
particles are aligned with the global coordinate system. The incident field is
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Figure 1: (a) A group of particles confined to a macroscopically plane-parallel
layer with non-scattering boundaries, and (b) the distance s(r,−ŝ) = ŝ·(r−rA),
where rA is the point where the straight line with the direction vector −ŝ going
through the observation point P crosses the lower boundary of the layer.

a plane electromagnetic wave with a wavenumber k1, propagation direction ŝ,
and amplitude E0(ŝ), i.e.,

E0(r) = E0(ŝ)ejk1ŝ·r, (1)

with j =
√
−1.

Throughout this paper we will use integral-operator notation to write inte-
gral equations in a compact form [6]. This short-hand notation is introduced in
Appendix 1 along with the Fourier transforms of vector and dyadic functions.
Moreover, the transition dyadic of an individual particle, which is the key in-
gredient of our analysis, is defined in Appendix 2 (see also the recent tutorial
[8]).

The frequency-domain scattering by a group of fixed particles can be de-
scribed by the vector Foldy equations [2, 3, 7, 8] which can be formulated with
respect to either the electric fields or the dyadic Green’s functions. For the
electric fields, the Foldy equations read

E = E0 +
∑

i

G0 Ti Eexci, (2)

Eexci = E0 +
∑

j 6=i
G0 Tj Eexcj , (3)

where E is the total field, E0 is the incident field, Eexci is the field “exciting”
particle i, Ti is the transition dyadic of particle i, G0 is the dyadic Green’s
function in free space, and the summations run implicitly from 1 to N . The

4



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

transition dyadic can be thought of as being a unique scattering ID of a particle
in that it expresses the field scattered by the particle everywhere in space in
terms of the field inside the particle [8]. Eq. (2) gives the total field, while
Eq. (3) is an integral equation for the exciting fields. For the dyadic Green’s
functions, the Foldy equations are [6]

G = G0 +
∑

i

G0 Ti Gi, (4)

Gi = G0 +
∑

j 6=i
G0 Tj Gj , (5)

where G is the dyadic Green’s function of the entire group of particles, and Gi

is the ith particle Green’s dyadic.
The scattering by a discrete random medium is governed by the Dyson

equations for the coherent field 〈E(r)〉 and the average dyadic Green’s function〈
G(r, r′)

〉
as well as by the Bethe–Salpeter equation for the dyadic correlation

function
〈
E(r) ⊗ E?(r′)

〉
, where ⊗ is the dyadic product sign and the asterisk

stands for "complex conjugate". The kernels of these integral equations are
the dyadic mass operator M and the tetradic scattering intensity operator I,
respectively [6]. The derivation of these integral equations under the Twersky
approximation is given below.

2.1 The Dyson equation for the coherent field
Consider the Foldy equations for the total field (2) and the exciting fields (3).
Inserting the iterated solution of the exciting fields equation

Eexci = E0 +
∑

j 6=i
G0 Tj E0

+
∑

j 6=i

∑

k 6=j
G0 Tj G0 Tk E0 + · · · (6)

into the total field equation, and employing the Twersky approximation [5],
gives the following order-of-scattering expansion for the total field:

E = E0 +
∑

i

G0 Ti E0 +
∑

i

∑

j 6=i
G0 Ti G0 Tj E0

+
∑

i

∑

j 6=i

∑

k 6=i,j
G0 Ti G0 Tj G0 Tk E0 + · · · . (7)

Recall that the Twersky approximation is based on keeping only the self-avoiding
multi-particle sequences and is valid in the limit N → ∞ [1, 5]. Hereafter, we
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assume that the Neumann series for the total field (7) converges. Denoting

E0(r) = r�— def
= �—,

Ti(r, r
′) = r

i
◦r′

def
=

i
◦,

G0(r, r′) = r r′
def
= ,

we illustrate the order-of-scattering expansion for the total field as

E(r) = �— +
∑

i

i
◦�— +

∑

i,j; j 6=i

i
◦

j
◦�— + · · · . (8)

Assuming full ergodicity of the N -particle ensemble [9, 10] and taking the condi-
tional configuration average of Eq. (7) under the assumption that the positions
of the particles are uncorrelated, yields

〈E〉 = E0 + n0

∫

D

G0 Ti E0 d3Ri

+ n20

∫

D

G0 Ti G0 Tj E0 d3Rjd3Ri

+ n30

∫

D

G0 Ti G0 Tj G0 Tk E0 d3Rkd3Rjd3Ri + · · · . (9)

In explicit form, the sum of the first two terms in the series (9) is

E1(r) = E0(r) + n0

∫

D

[∫

Di

G0(r, r1)

·Ti(r1, r2) ·E0(r2) d3r1d3r2
]
d3Ri. (10)

Extending the domain of definition of the transition dyadic Ti to the whole D
according to

Ti(r1, r2) = 0 for r1 and/or r2 /∈ Di, (11)

where 0 is the zero dyad, and interchanging the order of the integrations in Eq.
(10) gives

E1(r) = E0(r) + n0

∫

D

G0(r, r1)

·
[∫

D

Ti(r1, r2) d3Ri

]
·E0(r2) d3r1d3r2

= E0(r) + n0

∫

D

G0(r, r1) ·M(r1, r2) ·E0(r2) d3r1d3r2, (12)

where the so-called dyadic mass operator is defined by [6]

M(r1, r2) = n0

∫

D

Ti(r1, r2) d3Ri. (13)
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Thus, the dyadic mass operator is the integral of the transition dyadic of a
particle over the position of the particle times the particle number density.
Applying the same procedure to all terms in the series (9), we obtain the Dyson
equation for the coherent field:

〈E〉 = E0 + n0

∫

D

G0 Ti E0 d3Ri

+ n20

∫

D

G0 Ti G0 Tj E0 d3Rjd3Ri + · · ·

= E0 + G0 M E0 + G0 M G0 M E0 + · · ·
= E0 + G0 M 〈E〉 . (14)

With the notation
〈E(r)〉 = r� def

= �
the diagramatic derivation of the Dyson equation (14) is

� =
〈�— +

∑

i

i
◦�— +

∑

i,j; j 6=i

i
◦

j
◦�— + · · ·

〉

= �— +
〈∑

i

i
◦
〉�— +

〈 ∑

i,j; j 6=i

i
◦

j
◦
〉�— + · · ·

= �— +
〈∑

i

i
◦
〉�— +

〈∑

i

i
◦
〉 〈∑

j

j
◦
〉�— + · · ·

= �— + ��— + � ��— + · · ·
= �— + �� , (15)

where the dyadic mass operator is represented as

M(r, r′) =
〈∑

i

i
r◦r′

〉 def
=
〈∑

i

i
◦
〉

= �

and, according to the assumption that the positions of the particles are uncor-
related, we used the digramatic computation rule

〈 ∑

i,j; j 6=i

i
◦

j
◦
〉

=
〈∑

i

i
◦
〉 〈∑

j

j
◦
〉
.

Employing the same arguments for the Foldy equations for the dyadic Green’s
function as given by Eqs. (4) and (5), and defining

〈
G(r, r′)

〉
= r r′

def
= ,

we find

=
〈

+
∑

i

i
◦ +

∑

i,j; j 6=i

i
◦

j
◦ + · · ·

〉

= + � , (16)
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which is a diagramatic representation of the Dyson equation for the configuration-
averaged dyadic Green’s function:

〈
G
〉

= G0 + G0 M
〈
G
〉
. (17)

2.2 The Bethe–Salpeter equation for the dyadic correla-
tion function

The Dyson equation for the coherent field has been obtained by taking the
configuration average of the total field under the Twersky approximation as well
as assuming that the positions of the particles are uncorrelated. In a similar
fashion, an equation governing a second-order moment of the field, the so-called
Bethe–Salpeter equation, can be obtained.

The derivation of the Bethe–Salpeter equation for the dyadic correlation
function under the ladder approximation parallels that described in Ref. [1].
With S being the set of all N random scatterers (i) we consider two disjoint
subsets A0 and B0 of S, i.e., A0 ∩B0 = Ø, (ii) we fix a particle i, and consider
two disjoint subsets Ai and Bi of Si = S \ {i}, (iii) we fix two particles i and
j, and consider two disjoint subsets Aij and Bij of Sij = S \ {i, j}, and so
on. The sum of all scattering paths going through the particles in the sets A0,
Ai∪{i}, Aij ∪{i, j}, etc. gives the direct field E, while the sum of all scattering
paths going through the particles in the sets B, Bi∪{i}, etc. gives the complex
conjugate field E?. As the sets are disjoint, the dyadic correlation function〈
E(r)⊗E?(r′)

〉
computes as

〈
E(r)⊗E?(r′)

〉

=
∑
A0

∑
B0

{
E(r)

}
A0
⊗
{
E?(r′)

}
B0

+ n0

∫

D

∑
Ai

∑
Bi

{
E(r)

}
Ai ⊗

{
E?(r′)

}
Bi d

3Ri

+ n20

∫

D

∑
Aij

∑
Bij

{
E(r)

}
Aij
⊗
{
E?(r′)

}
Bij

d3Rjd3Ri + · · · , (18)

where
{
E(r)

}
A is the configuration average of the fields corresponding to all

self-avoiding paths P(A) going through the particles in the set A taken over the
positions of the particles in the set A. The sums

∑
A0

∑
B0

involve all possible
realizations of the sets A0 and B0, and for each realization, only those pairs of
self-avoiding paths (P(A0),P(B0)) which do not appear in previous realizations
of A0 and B0 are taken into account. In the following, we assume that for large
N , we can approximate

∑
A0

∑
B0

{
E(r)

}
A0
⊗
{
E?(r′)

}
B0
≈
{
E(r)

}
S ⊗

{
E?(r′)

}
S . (19)
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Applying the above assumption to all terms in the series (18) yields
〈
E(r)⊗E?(r′)

〉

=
{
E(r)

}
S ⊗

{
E?(r′)

}
S + n0

∫

D

{
E(r)

}
Si ⊗

{
E?(r′)

}
Si d

3Ri

+ n20

∫

D

{
E(r)

}
Sij
⊗
{
E?(r′)

}
Sij

d3Rjd3Ri + · · · . (20)

Next we compute the configuration average of the field over the positions of
the particles in the sets Si, Sij , etc., which are the subsets of S with one, two,
and more fixed particles. Considering the average field {E(r)}Si

, we let Sai and
Sbi be two disjoint subsets of Si, with the property that the paths connecting
the observation point r and particle i go through all particles in the subset
Sai , and the paths connecting the entrance point (the first particle struck by
the incident field) and particle i go through all particles in the subset Sbi . In
computing

{
E(r)

}
Si

we make an assumption which is similar to that in Eq. (19):
the configuration average of a field taken over the positions of the particles in a
subset A of S is computed by extending the sum over the particles in the subset
A to the whole set S. Diagramatically, we have

{
E(r)

}
Si

=
∑
Sa
i

∑
Sb
i

〈
+
∑

p∈Sa
i

p
◦ +

∑

p,q∈Sa
i ; q 6=p

p
◦

q
◦ + · · ·

〉

i
◦
〈�— +

∑

n∈Sb
i

n
◦�— +

∑

n,m∈Sb
i ;m6=n

n
◦

m
◦�— + · · ·

〉

=
〈

+
∑

p

p
◦ +

∑

p,q; q 6=p

p
◦

q
◦ + · · ·

〉

i
◦
〈�— +

∑

n

n
◦�— +

∑

n,m;m 6=n

n
◦

m
◦�— + · · ·

〉

=
i
�� , (21)

that is,

{E(r)}Si
=

∫

Di

〈
G(r, r1)

〉
·Ti(r1, r2) ·

〈
E(r2)

〉
d3r1d3r2. (22)

Using the dyadic identities

(A · a)⊗ (B · b) = (A⊗B) · (a⊗ b), (23)

(A ·C)⊗ (B ·D) = (A⊗B) · (C⊗D), (24)

extending the domain of definition of the transition dyadic Ti to the whole D,
and interchanging the order of integrations, we find that the first term in the

9
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series (20) is given by

n0

∫

D

{
E(r)

}
Si
⊗
{
E?(r′)

}
Si

d3Ri

= n0

∫

D

{∫

Di

[
〈
G(r, r1)

〉
·Ti(r1, r2)]⊗ [

〈
G
?
(r′, r′1)

〉
·T?

i (r
′
1, r
′
2)]

· [
〈
E(r2)

〉
⊗
〈
E?(r′2)

〉
] d3r1d3r2d3r′1d

3r′2
}
d3Ri

=

∫

D

[〈
G(r, r1)

〉
⊗
〈
G
?
(r′, r′1)

〉]
· I(r1, r2, r

′
1, r
′
2)

· [
〈
E(r2)

〉
⊗
〈
E?(r′2)

〉
] d3r1d3r2d3r′1d

3r′2, (25)

where the scattering intensity operator is defined by

I(r1, r2, r
′
1, r
′
2) = n0

∫

D

Ti(r1, r2)⊗T
?

i (r
′
1, r
′
2) d3Ri. (26)

To compute the configuration average with two fixed particles we proceed
analogously. In this case, we find

{E(r)}Sij
=

i
�

j
�� , (27)

or explicitly,

{E(r)}Sij =

∫

Di

〈
G(r, r1)

〉
·Ti(r1, r2) ·

〈
G(r2, r3)

〉
·Tj(r3, r4)

·
〈
E(r4)

〉
d3r1d3r2d3r3d3r4. (28)

We thus obtain

n20

∫

D

{
E(r)

}
Sij
⊗
{
E?(r′)

}
Sij

d3Rid3Rj

=

∫

D

[〈
G(r, r1)

〉
⊗
〈
G
?
(r′, r′1)

〉]
· I(r1, r2, r

′
1, r
′
2)

·
[〈

G(r2, r3)
〉
⊗
〈
G
?
(r′2, r

′
3)
〉]
· I(r3, r4, r

′
3, r
′
4)

· [
〈
E(r4)

〉
⊗
〈
E?(r′4)

〉
] d3r1d3r2d3r′1d

3r′2 d
3r3d3r4d3r′3d

3r′4. (29)

Note that the ladder approximation for the dyadic correlation function fun-
damentally relies on the assumption that in Eq. (29), the order of the particles
i and j in the expressions of

{
E
}
Sij

and
{
E?
}
Sij

is the same, or equivalently,
that the ordered set of connected particles {i, j} is associated with both the
direct and the complex-conjugate field. The same is true for the other terms in
Eq. (20). By keeping only such ladder contributions and summing them up, we
deduce that Eq. (20) is the iterated solution of the integral equation

10
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〈
E(r)⊗E?(r′)

〉
=
〈
E(r)

〉
⊗
〈
E?(r′)

〉

+

∫

D

[〈
G(r, r1)

〉
⊗
〈
G
?
(r′, r′1)

〉]
· I(r1, r2, r

′
1, r
′
2)

·
〈
E(r2)⊗E?(r′2)

〉
d3r1d3r2d3r′1d

3r′2, (30)

with the scattering intensity operator being given by Eq. (26). Eq. (30) is the
Bethe–Salpeter equation for the dyadic correlation function.

Using the following diagramatic representation for the dyadic correlation
function

〈
E(r)⊗E?(r′)

〉
,

E〈 〉 =( )r
r

E∗ 'r( ) =
r' r'

r

C C

we illustrate the Bethe–Salpeter equation (30) and its iterated solution as

C = +
∘
∘

+
∘
∘

∘
∘

+ ⋯

= +
∘
∘

C

where, in the ladder approximation, the scattering intensity operator is

I r( , , , )r 'r1r 1 ' =
∘

i

i
∑

∘r

'r

r1

'r1 ∘

i

i
∑

∘
:=

∘
∘

===

and for example, the following product rule for the upper and lower scattering
path applies

∘
∘

∘
∘

= ⋅ ⋅

3 Coherent field
The derivation of the Dyson equation (14) is based on the Twersky approxima-
tion. An alternative derivation makes use of the Foldy approximation for the
exciting fields. To show this, we consider the Foldy equation for the total field
(cf. Eq. (2)) E = E0 +

∑
i G0 Ti Eexci. The exciting field Eexci is a function of

all particle positions, i.e., Eexci = Eexci(R1, ...,RN ), while the transition dyadic
Ti is only a function of the ith particle, i.e, Ti = Ti(Ri). Taking the configu-
ration average of this equation under the assumption that the positions of the
particles are uncorrelated, we obtain

〈
E
〉

= E0 + n0

∫

D

G0 Ti

〈
Eexci

〉
i
d3Ri, (31)

11
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Figure 2: The geometry showing the relevant quantities for computing the in-
tegral (35).

where
〈
Eexci

〉
i
is the conditional probability of the exciting field with the posi-

tion of particle i held fixed. Employing the Foldy approximation
〈
Eexci

〉
i

=
〈
E
〉
, (32)

the integral equation (31) becomes

〈
E
〉

= E0 + n0

∫

D

G0 Ti

〈
E
〉
d3Ri. (33)

From Eq. (14), we infer that Eq. (33) is the Dyson equation with the dyadic
mass operator as in Eq. (13).

The next step is to derive the Foldy integral equation for the coherent field
(see [1, 11]). Now, the far-field approximation will come into play. In order to
simplify the notation we set, as usual, Ec(r) =

〈
E(r)

〉
, and express the Dyson

equation (33) in explicit form as

Ec(r) = E0(r) + n0

∫

D

[∫

Di

G0(r, r1) ·Ti(r1, r2)

·Ec(r2) d3r1d3r2
]
d3Ri. (34)

In Eq. (34) we used the fact that the support of Ti is Di, so that the integration
domain for r1 and r2 is Di. To compute the integral over Di, we choose the
origin of the coordinate system at Oi, and let r = ri + Ri, r1 = r1i + Ri, and
r2 = r2i + Ri (Fig. 2). Then, using G0(r, r1) = G0(ri, r1i) and Ti(r1, r2) =
T(r1 −Ri, r2 −Ri) = T(r1i, r2i), where T is the transition dyadic of a particle
centered at the origin of the coordinate system, we deduce that the integral over
Di is the field scattered by particle i when excited by the coherent field, i.e.,

Escti(r) =

∫

Di

G0(ri, r1i) ·T(r1i, r2i) ·Ec(r2) d3r1id3r2i. (35)

12
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An approximate representation for the coherent field Ec(r2) in Di, can be ob-
tained in the framework of the characteristic waves method (Appendix 4). In
this setting, the coherent field propagating along the incidence direction ŝ can
be written as

Ec(r) =
2∑

n=1

ejKn (̂s)̂s·rEnT(ŝ), (36)

where Kn(ŝ) is the effective wavenumber, and EnT(ŝ) is the transverse charac-
teristic wave polarization associated with Kn(ŝ) [6]. Then, supposing that for a
sparse concentration of particles, Kn(ŝ) ≈ k1, we approximate

Kn(ŝ)ŝ · r2 = Kn(ŝ)ŝ ·Ri +Kn(ŝ)ŝ · r2i
≈ Kn(ŝ)ŝ ·Ri + k1ŝ · r2i, (37)

implying
Ec(r2) ≈ ejk1ŝ·r2iEc(Ri), ŝ ·Ec(Ri) = 0. (38)

Note that this result which states that the coherent field in Di can be approx-
imated analytically by a plane electromagnetic wave with amplitude Ec(Ri),
wavenumber k1, and propagation direction ŝ has also been established in Ref.
[1], provided that the Twersky approximation is used in conjunction with the
far-field Foldy equations. Also note that for sparse media, the assumption
Kn(ŝ) ≈ k1 is typical of the characteristic waves method (Appendix 4). Fur-
thermore, using the far-field representation for the dyadic Green’s function

G0(ri, r1i) = (I− r̂i ⊗ r̂i)
ejk1ri

4πri
e−jk1r̂i·r1i , (39)

and the relation between the far-field scattering dyadic A and the Fourier trans-
form of the transition dyadic Tp (cf. Eq. (129) of Appendix 3),

A(r̂i, ŝ) · E(ŝ) =
1

4π
(I− r̂i ⊗ r̂i) ·Tp(k1r̂i, k1ŝ) · E(ŝ), (40)

where in general, E(ŝ) is a vector field orthogonal to the incidence direction ŝ,
i.e., ŝ · E(ŝ) = 0, we obtain

Escti(r) =

∫

Di

G0(r, r1) ·Ti(r1, r2) ·Ec(r2) d3r1d3r2

=
ejk1ri

ri
A(r̂i, ŝ) ·Ec(Ri). (41)

The above result is also valid for any vector field E(r2) which can be approxi-
mated analytically by a plane electromagnetic wave in Di, that is, for r2 ∈ Di,
we have E(r2) = exp(jk1ŝ · r2i)E(Ri) with ŝ ·E(Ri) = 0. Substituting Eq. (41)
in Eq. (34), we obtain the Foldy integral equation for the coherent field

Ec(r) = E0 (r) + n0

∫

D

g0(ri)A(r̂i, ŝ) ·Ec(Ri) d3Ri, (42)
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where g0(ri) = exp(jk1ri)/ri.
To solve the Foldy integral equation, we apply the Helmholtz operator4+k21.

Using 4E0 (r) + k21E0 (r) = 0, where 0 is a zero vector, and

4g0(ri) + k21g0(ri) = −4πδ(r−Ri), (43)

we get
4Ec(r) + [k21I + 4πn0A(ŝ, ŝ)] ·Ec(r) = 0. (44)

Finally, for n0 � 1, we approximate

k21I + 4πn0A(ŝ, ŝ) ≈
[
k1I +

2π

k1
n0A(ŝ, ŝ)

]2
, (45)

and infer that the solution to Eq. (44) is

Ec(r) = exp
{
j
[
k1I +

2π

k1
n0A(ŝ, ŝ)

]
s(r,−ŝ)

}
·Ec(rA), (46)

where s = s(r,−ŝ) = ŝ ·(r−rA), and rA is the point where the straight line with
the direction vector −ŝ going through the observation point crosses the lower
boundary of the layer. This result coincides with that obtained in Ref. [1].

In the scalar case, an alternative method for solving the Foldy integral equa-
tion (42) can be found in Ref. [11]. In the vector case, an adapted version
of this more “cumbersome” solution method is given in Appendix 5. Instead
of solving the Foldy integral equation, the coherent field can be computed in
the framework of the characteristic wave method discussed in Appendix 4. In
this approach, the dispersion equation for the effective wavenumber as well as
a general representation for the coherent field are formulated in terms of the
dyadic mass operator.

4 Second-order moment of the electromagnetic
field

To obtain the vector radiative transfer equation we will use the ladder approx-
imated Bethe–Salpeter equation for the dyadic correlation function, or more
specifically, an iterated solution of this integral equation. Since we intend to
use the far-field approximation from now on, we will first establish some aux-
iliary results involving integrals of the average dyadic Green’s function in the
far-field region. Actually, for a fixed particle i, we will compute the integral

∫

Di

〈
G(r, r1)

〉
·Ti(r1, r2) ·Ec(r2) d3r1d3r2, (47)

when the observation point r is in the far-field region of Di.
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Figure 3: Geometries showing the relevant quantities in (a) solving Eq. (51),
and (b) computing the integral (63) by the stationary phase method.

4.1 Integrals of the average dyadic Green’s function in the
far-field region

The Dyson equation for the average dyadic Green’s function is (cf. Eq. (17))

〈
G(r, r′)

〉
= G0(r, r′) + n0

∫

D

[∫

Dj

G0(r, r1) ·Tj(r1, r2)

·
〈
G(r2, r

′)
〉
d3r1d3r2

]
d3Rj . (48)

For a fixed i, we right-multiply Eq. (48) by Ti(r
′, r′′) ·Ec(r

′′) with r′, r′′ ∈ Di,
and integrate over r′ and r′′. Taking into account that the support of Ti is Di

and that of Tj is Dj , and interchanging the order of integration, we obtain the
integral equation

∫

Di

〈
G(r, r′)

〉
·Ti(r

′, r′′) ·Ec(r
′′) d3r′d3r′′

=

∫

Di

G0(r, r′) ·Ti(r
′, r′′) ·Ec(r

′′)d3r′d3r′′

+ n0

∫

D

{∫

Dj

G0(r, r1) ·Tj(r1, r2)

·
[∫

Di

〈
G(r2, r

′)
〉
·Ti(r

′, r′′) ·Ec(r
′′) d3r′d3r′′

]
d3r1d3r2

}
d3Rj . (49)
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To solve Eq. (49) for
〈
G(r, r′)

〉
when the source point r′ is in Di and the

observation point r is in the far-field region of Di, we seek a solution in the form

〈
G(r, r′)

〉
= X(r,Ri) ·G0(r, r′). (50)

Thus, we assume that the unknown dyadic X(r,Ri) depends on the observation
point r and the particle position Ri, but not on the source point r′. Moreover,
we suppose that X(r,Ri) is a transverse dyadic with respect to the direction r̂i,
that is, r̂i ·X(r,Ri) = 0 with ri = r−Ri. Inserting Eq. (50) in Eq. (49) gives

X(r,Ri) ·
∫

Di

G0(r, r′) ·Ti(r
′, r′′) ·Ec(r

′′)d3r′d3r′′

=

∫

Di

G0(r, r′) ·Ti(r
′, r′′) ·Ec(r

′′) d3r′d3r′′

+ n0

∫

D

{∫

Dj

G0(r, r1) ·Tj(r1, r2) ·X(r2,Ri)

·
[∫

Di

G0(r2, r
′) ·Ti(r

′, r′′) ·Ec(r
′′) d3r′d3r′′

]
d3r1d3r2

}
d3Rj , (51)

and we solve now the integral equation (51) for X(r,Ri). The geometry showing
the relevant quantities is illustrated in Fig. 3. The integrals in Eq. (51) are
computed as follows. First, we evaluate the second term on the right-hand side
of Eq. (51). The integral over Di, denoted by Ei(r2), is computed by means of
Eq. (41); the result is

Ei(r2) =

∫

Di

G0(r2, r
′) ·Ti(r

′, r′′) ·Ec(r
′′) d3r′d3r′′

=
ejk1r2ji

r2ji
A(r̂2ji, ŝ) ·Ec(Ri), (52)

whence, approximating

ejk1r2ji

r2ji
≈ ejk1R̂ji·r2j e

jk1Rji

Rji
(53)

and
A(r̂2ji, ŝ) ≈ A(R̂ji, ŝ), (54)

we find that in the coordinate system centered at Oj ,

Ei(r2) = ejk1R̂ji·r2jEi(Rj) (55)

is a locally plane electromagnetic wave with propagation direction R̂ji and am-
plitude

Ei(Rj) =
ejk1Rji

Rji
A(R̂ji, ŝ) ·Ec(Ri). (56)
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For computing the integral over Dj , we approximate

X(r2,Ri) ≈ X(Rj ,Ri), (57)

and define

Ej(r2) = X(Rj ,Ri) ·Ei(r2) = ejk1R̂ji·r2jEj(Rj), (58)

with

Ej(Rj) = X(Rj ,Ri) ·Ei(Rj). (59)

Thus, analogously to Ei(r2), Ej(r2) is also a plane electromagnetic wave with
propagation direction R̂ji and an amplitude as in Eq. (59). Noting the orthog-
onality relation

R̂ji ·Ej(Rj) = R̂ji · [X(Rj ,Ri) ·Ei(Rj)] = 0, (60)

owing to R̂ji ·X(Rj ,Ri) = 0, and applying again Eq. (41) with Ej(r2) in place
of Ec(r2), we find that the second term on the right-hand side of Eq. (51) is

n0

∫

D

ejk1rj

rj
A(r̂j , R̂ji) ·Ej(Rj) d3Rj . (61)

For the integrals over Di on the left-hand side of Eq. (51) and in the first term
on the right-hand side of Eq. (51), we directly apply Eq. (41); taking account
of Eqs. (56), (59), and (61), we end up with

X(r,Ri) ·
[ejk1ri

ri
A(r̂i, ŝ) ·Ec(Ri)

]

=
ejk1ri

ri
A(r̂i, ŝ) ·Ec(Ri) + n0

∫

D

ejk1rj

rj
A(r̂j , R̂ji)

·X(Rj ,Ri) ·
ejk1Rji

Rji
A(R̂ji, ŝ) ·Ec(Ri)d3Rj . (62)

The integral in Eq. (62) is computed by the stationary phase method [11].
Referring to Fig. 3b, we obtain

∫

D

ejk1rj

rj
A(r̂j , R̂ji) ·X(Rj ,Ri) ·

ejk1Rji

Rji
A(R̂ji, ŝ) ·Ec(Ri)d3Rj

=
ejk1ri

ri
j
2π

k1
A(r̂i, r̂i) ·

[ 1

r̂i · ẑ

∫ z

zi

X(Rj ,Ri) dzj
]
·A(r̂i, ŝ) ·Ec(Ri), (63)

and we arrive at the integral equation

X(r,Ri) = I + j
2π

k1
n0A(r̂i, r̂i) ·

[ 1

r̂i · ẑ

∫ z

zi

X(Rj ,Ri) dzj
]
. (64)
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It is not hard to see that the solution of this integral equation is

X(r,Ri) = exp
[
j
2π

k1
n0A(r̂i, r̂i)|r−Ri|

]
= exp

[
j
2π

k1
n0A(r̂i, r̂i)ri

]
. (65)

Indeed, for

W = j
2π

k1
n0A(r̂i, r̂i), (66)

the results

X(r,Ri) = exp(W|r−Ri|) = exp(Wri), (67)

X(Rj ,Ri) = exp(W|Rj −Ri|) = exp(Ws), (68)

together with the dyadic identity

eWri = I + W ·
[∫ ri

0

eWs ds
]

(69)

prove the assertion. In Eqs. (68) and (69), s is defined by s = |Rj −Ri|, and in
deriving Eq. (69), we made the change of variable zj = zi + sr̂i · ẑ. Hence, from
Eqs. (50) and (65), we infer that the desired expression for the average dyadic
Green’s function is

〈
G(r, r′)

〉
= exp

[
j
2π

k1
n0A(r̂i, r̂i)ri

]
·G0(r, r′), r′ ∈ Di. (70)

Combining Eqs. (41) and (70), we find that the integral (47) is
∫

Di

〈
G(r, r1)

〉
·Ti(r1, r2) ·Ec(r2) d3r1d3r2

=
t(r̂i, ri)

ri
·A(r̂i, ŝ) ·Ec(Ri), (71)

where
t(r̂i, ri) = ejk1ri exp

[
j
2π

k1
n0A(r̂i, r̂i)ri

]
(72)

is the coherent transmission dyadic from particle i to the observation point r.
An interesting remark is in order: while the integral in Eq. (41) represents the
field scattered by particle i at r, the integral in Eq. (71) represent the field
scattered by particle i at r via various particle sequences.

A further consequence of Eqs. (41) and (70) is the integral result
∫

Di

〈
G(r, r1)

〉
·Ti(r1, r2)

·
[∫

Dj

〈
G(r2, r3)

〉
·Tj(r3, r4) ·Ec(r4) d3r3d3r4

]
d3r1d3r2

=
t(r̂i, ri)

ri
·A(r̂i, R̂ij) ·

t(R̂ij , Rij)

Rji
·A(R̂ij , ŝ) ·Ec(Rj), (73)
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which represents the field scattered from j to i to r via various particle sequences.
Note that in deriving Eqs. (73), we used the approximations (53) and (54) as
well as the orthogonality relation R̂ij · t(R̂ij , Rij) = 0, which follows from

R̂ij · exp
[
j
2π

k1
n0A(R̂ij , R̂ij)Rij

]
= 0. (74)

4.2 Vector radiative transfer equation
The scattering intensity operator given by Eq. (26) is the kernel of the lad-
der approximated Bethe–Salpeter equation for the dyadic correlation function.
Using the dyadic identities

(A⊗B) · (C⊗D) = (A ·C)⊗ (B ·D),

(A⊗B) ·C = A ·C ·BT
,

where T stands for "transposed", we express the Bethe–Salpeter equation (30)
as

〈
E(r)⊗E?(r′)

〉

= Ec(r)⊗E?
c(r′) + n0

∫

D

{∫

Di

[
〈
G(r, r1)

〉
·Ti(r1, r2)]

·
〈
E(r2)⊗E?(r′2)

〉
· [
〈
G
?
(r′, r′1)

〉
·T?

i (r
′
1, r
′
2)]T

× d3r1d3r2d3r′1d
3r′2
}
d3Ri, (75)

and further, upon introducing the dyadic

Pi(r, r
′) =

∫

Di

〈
G(r, r1)

〉
·Ti(r1, r

′) d3r1, (76)

as
〈
E(r)⊗E?(r′)

〉

= Ec(r)⊗E?
c(r′) + n0

∫

D

[∫

Di

Pi(r, r2) ·
〈
E(r2)⊗E?(r′2)

〉

·P†i (r′, r′2) d3r2d3r′2
]
d3Ri, (77)

where † stands for conjugate transpose. Iterating Eq. (77) gives
〈
E(r)⊗E?(r′)

〉

= Ec(r)⊗E?
c(r′) + n0

∫

D

{∫

Di

Pi(r, r2) · [Ec(r2)⊗E?
c(r′2)]

·P†i (r′, r′2) d3r2d3r′2
}
d3Ri

+ n20

∫

D

{∫

Di

∫

Dj

Pi(r, r2) ·Pj(r2, r4) · [Ec(r4)⊗E?
c(r′4)]

·P†j(r′2, r′4) ·P†i (r′, r′2)d3r4d3r′4d
3r2d3r′2

}
d3Rjd3Ri + · · · , (78)
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where the integration domain over r2 and r′2 is Di, while the integration domain
over r4 and r′4 is Dj .

From Eqs. (71) and (73), we have the integral results
∫

Di

Pi(r, r2) ·Ec(r2) d3r2 = V(ri, ŝ) ·Ec(Ri) (79)

and
∫

Di

∫

Dj

Pi(r, r2) ·Pj(r2, r4) ·Ec(r4) d3r4d3r2

= V(ri, R̂ij) ·V(Rij , ŝ) ·Ec(Rj), (80)

where

V(ri, ŝ) =
t(r̂i, ri)

ri
·A(r̂i, ŝ). (81)

Applying now the dyadic identity

A · (a⊗ b) ·BT
= (A · a)⊗ (B · b),

setting r = r′ in Eq. (78), switching to the (ladder) coherency dyadic CL(r) =〈
E(r) ⊗ E?(r)

〉
and its coherent part Cc (r) = Ec(r) ⊗ E?

c(r), and using Eqs.
(79) and (80), we arrive at

CL(r) = Cc (r) + n0

∫

D

V(ri, ŝ) ·Cc(Ri) ·V
†
(ri, ŝ) d3Ri

+ n20

∫

D

V(ri, R̂ij) ·V(Rij , ŝ) ·Cc(Rj) ·V
†
(Rij , ŝ)

·V†(ri, R̂ij) d3Rid3Rj + · · · . (82)

This expansion was also derived as Eq. (145) in Ref. [1] and was the key
point of the further development. The complete derivation of the radiative
transfer equation from the expansion (82) was given in Section 11.3 of Ref. [1]
and will not be repeated here. Essentially, from Eq. (82), a series expansion for
the (ladder) specific coherency dyadic ΣL, defined through the angular spectrum
representation

CL(r) =

∫
ΣL(r,−p̂) d2p̂, (83)

was obtained. This series expansion is the expanded form of an integral equation
for ΣL, which can be transformed into an integral equation for the diffuse specific
coherency dyadic ΣdL, defined by

ΣL(r,−p̂) = ΣdL(r,−p̂) + δ(p̂ + ŝ)Cc (r) . (84)
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Finally, differentiating the integral equation forΣdL the vector radiative transfer
equation

dId(r, q̂)

ds
= −n0K(q̂)Id(r, q̂) + n0Z(q̂, ŝ)Ic (r)

+ n0

∫
Z(q̂, q̂′)Id(r, q̂

′)d2q̂′, (85)

is derived. Here, Id is the diffuse specific intensity column vector, Ic is the
Stokes column vector of the coherent field, while Z and K are the phase and the
extinction matrix of a nonspherical particle in a fixed orientation.

5 Conclusions
As in Part I [1], in this paper we have derived the vector radiative transfer equa-
tion for a discrete random layer with non-scattering boundaries and a sparse con-
centration of randomly positioned particles. This time, however, we maximally
delayed the use of the far-field assumption for sparsely distributed particles by
using the exact integral Foldy equations. Specifically, we proceed as follows.

First, by assuming that the discrete random medium in question if fully
ergodic while the positions of the constituent particles are statistically indepen-
dent, and by applying the Twersky approximation to the iterated solution of the
integral Foldy equations, we derived the Dyson equation for the configuration-
averaged coherent field and the ladder approximated Bethe–Salpeter equation
for the configuration-averaged dyadic correlation function. Furthermore, we
proved that the Dyson equation can be also obtained by means of the Foldy ap-
proximation for the exciting fields. Strictly speaking, these results do not rely
on the electromagnetic far-field assumption and can thus be considered rather
general. One can argue however that the particle number density should be
sufficiently low to ensure the presumed statistical independence and uniformity
of particle positions.

Second, we showed that under the far-field approximation, the Dyson equa-
tion reduces to the Foldy integral equation for the coherent field. To this end, we
used the far-field representation of the dyadic Green’s function and the relation
between the far-field scattering dyadic and the Fourier transform of the transi-
tion dyadic. We discussed two methods for solving the Foldy integral equation:
an approach based on the application of the Helmholtz operator to the integral
equation, and an approach similar to that used by Ishimaru in the scalar case
[11]. Next, we showed that the same expression for the coherent field can be
obtained in the framework of the characteristic waves method. However, in this
case, the additional assumptions that the coherent field propagates along the
incidence direction and that the effective wavenumber is close to that of the
background medium had to be imposed.

Third, we derived the vector radiative transfer equation by considering an
iterated solution of the Bethe–Salpeter equation for the dyadic correlation func-
tion and by computing each term in the series under the far-field approximation.
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In fact, we estimated various integrals involving the average dyadic Green’s func-
tion in the far-field region. Switching to the coherency dyadic, we found that
the resulting series representation coincides with that obtained in Ref. [1]. A
direct consequence of this series expansion is an integral equation for the diffuse
specific coherency dyadic implying the vector radiative transfer equation for the
diffuse specific intensity column vector.

In the final analysis, the same assumptions and approximations as those
used in Ref. [1] have been invoked, albeit in a different order, and the same
vector radiative transfer equation has been arrived at. However, two important
comments are called for.

First, it should be pointed out that a key point of the analysis in this paper is
the assumption (38) stating that the coherent field can be locally approximated
by a plane electromagnetic wave having the same wavenumber as that of the
background medium. This assumption implies the relation (41) which is used
many times during the derivation. To justify the assumption (38) we used
two arguments which, strictly speaking, are not necessarily consistent with the
present approach: one is a result of the characteristic wave method, wherein
the assumptions mentioned above are made, and the other one is a result of the
analysis performed in Ref. [1], wherein the Twersky approximation is used in
conjunction with the far-field Foldy equations.

Second, it is relatively straightforward to justify the use of the ladder ap-
proximation in the computation of second moments in the field after having
made the far-field assumption. Indeed, in that case different multi-particle con-
tributions to the total field at an observation point are transverse waves that
can be characterized by the corresponding cumulative phases. It can then be
argued that upon configurational averaging, the extreme sensitivity of the re-
spective complex exponential phase factors on particle positions will zero out
the contributions of all second-moment diagrams except those of the ladder di-
agrams (see, e.g., Section 8.11 of Ref. [4] or Section 18.2 of Ref. [9]). Strictly
speaking, this argument cannot be made in the case of densely packed particles
to which the far-field assumption can be inapplicable.

We thus have to conclude that as compared to the derivation given in Ref.
[1], the present derivation is less self-consistent.

Finally we note that our primary objective has been to trace the first-
principles origin of the radiative transfer theory. Therefore, we have not dis-
cussed numerical methods for solving the vector radiative transfer equation (or
its simplified scalar version) and specific practical applications in various fields
of science and engineering. This further information can be found in Refs.
[4, 9, 13, 14] and numerous publications cited therein.
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Appendix 1. Integral-operator notation and Fourier
transforms of vector and dyadic functions
Considering the dyadic function A(r, r′), the vector function x(r), and the
dyadic function X(r, r′), we define the vector function (Ax)(r) and the dyadic
function (A X)(r, r′) through the linear transformations

(Ax)(r)
def
=

∫
A(r, r1) · x(r1) d3r1, (86)

and
(A X)(r, r′)

def
=

∫
A(r, r1) ·X(r1, r

′)d3r1, (87)

respectively, the entire three-dimensional space R3 serving as the integration
domain. In general, we have

(A B X)(r, r′) =

∫
A(r, r1) ·B(r1, r2) ·X(r2, r

′) d3r2d3r1. (88)

The linear operator A acting on vectors and dyadics is an integral operator with
the kernel A(r, r′). Although we use the same notation, we assume that it can
be inferred from the context if a quantity is an operator or a dyadic function.

The inverse dyadic function A
−1

(r, r′) of the dyadic function A(r, r′) is
defined by the relation

(A A
−1

)(r, r′) = (A
−1

A)(r, r′) = δ(r− r′)I, (89)

or explicitly,
∫

A(r, r1) ·A−1(r1, r
′) d3r1 =

∫
A
−1

(r, r1) ·A(r1, r
′) d3r1

= δ(r− r′)I, (90)

where δ(r − r′) is the three-dimensional delta function and I is the identity
dyadic. As a result, we find

(A
−1

A X)(r, r′) =

∫
δ(r− r1)X(r1, r

′)d3r2 = X(r, r′), (91)

that is
A
−1

A X = A A
−1

X = X. (92)

The Fourier transforms of the vector function x(r) and the dyadic function
X(r, r′) are defined respectively, by

F(x)(p) =

∫
e−jp·rx(r)d3r, (93)

F(X)(p,p′) =

∫
e−jp·rX(r, r′)ejp

′·r′ d3r′d3r, (94)
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and the inverse transformations are

x(r) =
1

(2π)3

∫
ejp·rF(x)(p) d3p, (95)

X(r, r′) =
1

(2π)6

∫
ejp·rF(X)(p,p′)e−jp′·r′ d3p′d3p. (96)

The well-known representation for the Dirac delta function,

δ(r− r′) =
1

(2π)3

∫
ejp·(r−r

′) d3p, (97)

plays an important role in the calculation.
It is not hard to see that the Fourier transforms of (Ax)(r) and (A X)(r, r′)

are, respectively,

F(Ax)(p) =
1

(2π)3

∫
F(A)(p,p′) · F(x)(p′) d3p′, (98)

F(A X)(p,p′) =
1

(2π)3

∫
F(A)(p,p1) · F(X)(p1,p

′) d3p1, (99)

and that

F(A A
−1

)(p,p′) = F(A
−1

A)(p,p′) = (2π)3δ(p− p′)I. (100)

Using the short-hand notation F(x)(p) = xp(p) and F(X)(p,p′) = Xp(p,p
′),

we summarize below the Fourier transforms of some special dyadic functions.

1. If X(r, r′) is a translation invariant dyadic, i.e.,

X(r, r′) = X(r− r′), (101)

we have

Xp(p,p
′) = (2π)3δ(p− p′)Xp(p), (102)

where

Xp(p) =

∫
X(r− r′)e−jp·(r−r′)d3(r− r′)

=

∫
X(R)e−jp·R d3R. (103)

The Fourier transform of the vector function a(r) = (Xb)(r) is

ap(p) = Xp(p) · bp(p), (104)

while the Fourier transform of the dyadic function A(r, r′) = (X B)(r, r′)
is

Ap(p,p
′) = Xp(p) ·Bp(p,p

′). (105)
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Taking the Fourier transform of Eq. (90), using Eq. (99) and (cf. Eqs.
(94) and (97))

F(δI)(p,p′) = (2π)3δ(p− p′)I, (106)

we obtain

1

(2π)3

∫
Xp(p,p1) ·X−1p (p1,p

′)d3p1 = (2π)3δ(p− p′)I, (107)

whence, accounting for Eq. (102), we find

Xp(p) ·X−1p (p) = I. (108)

Thus, in the Fourier space, X
−1
p is the inverse of Xp.

2. A dyadic function such that

Xi(r, r
′) = X(r−Ri, r

′ −Ri) (109)

is called translational. The Fourier transform of Xi is

Xip(p,p
′) = e−jp·RiXp(p,p

′)ejp
′·Ri , (110)

where Xp(p,p
′) is the Fourier transform of X. The Fourier transform of

the vector ai(r) = (Xib)(r) is

aip(p) =
1

(2π)3

∫
e−j(p−p1)·RiXp(p,p1) · bp(p1) d3p1, (111)

while the Fourier transform of the dyadic function Ai(r, r
′) = (Xi B)(r, r′)

is

Aip(p,p
′) =

1

(2π)3

∫
e−j(p−p1)·RiXp(p,p1) ·Bp(p1,p

′) d3p1. (112)

Appendix 2. Transition dyadic
Consider a homogeneous particle embedded in a lossless, homogeneous and
isotropic medium. The wavenumber in the host medium is k1, while the wavenum-
ber inside the particle is k2 = mk1, where m is the relative refractive index of
the particle. The particle is centered at the origin of the coordinate system, and
we denote by D0 the domain occupied by the particle. The scattering potential
of the particle U0(r) = k21(m2 − 1)Θ(r), with

Θ(r) =

{
1, r ∈ D0

0, r /∈ D0
,

can be elevated to a dyadic, the so-called potential dyadic, defined by

U0(r, r′) = U0(r)δ(r− r′)I, r, r′ ∈ R3. (113)
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In terms of U0, the integral equations for the total field and the dyadic Green’s
function are

E(r) = E0(r) +

∫
G0(r, r1) ·U0(r1, r2)

·E(r2) d3r2d3r1, r ∈ R3, (114)

and

G(r, r′) = G0(r, r′) +

∫
G0(r, r1) ·U0(r1, r2)

·G(r2, r
′) d3r2d3r1, r, r′ ∈ R3, (115)

respectively.
The transition dyadic T is defined through the relation

E(r) = E0(r) +

∫
G0(r, r1)

·T(r1, r2) ·E0(r2) d3r2d3r1, r ∈ R3; (116)

like for U0, the support of the transition dyadic T is D0, that is,

T(r1, r2) = 0 for r1 and /or r2 /∈ D0.

The scattered field, given by

Esct(r) =

∫
G0(r, r1) ·U0(r1, r2) ·E(r2)d3r2d3r1, r ∈ R3 \D0, (117)

and the internal field Eint can be expressed in terms of the transition dyadic as

Esct(r) =

∫
G0(r, r1) ·T(r1, r2) ·E0(r2)d3r2d3r1, r ∈ R3 \D0, (118)

and
Eint(r) =

1

k21(m2 − 1)

∫
T(r, r1) ·E0(r1)d3r1, r ∈ D0, (119)

respectively. Similarly, in terms of the transition dyadic, the integral equation
for the dyadic Green’s function is

G(r, r′) = G0(r, r′) +

∫
G0(r, r1) ·T(r1, r2) ·G0(r2, r

′)d3r2d3r1. (120)

The transition dyadic satisfies the Lippmann–Schwinger equation

T(r, r′) = U0(r, r′) +

∫
U0(r, r1) ·G0(r1, r2) ·T(r2, r

′) d3r2d3r1, (121)

so that once T is known, the scattered and internal fields can be computed by
means of Eqs. (118) and (119), respectively.
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Appendix 3. Relationship between the far-field
scattering dyadic and the Fourier transform of the
transition dyadic
As in Appendix 2, we consider the scattering by a homogeneous particle centered
at the origin of the coordinate system. For an incident plane electromagnetic
wave

E0(r) = E0(ŝ)ejk1·r, (122)

with k1 = k1ŝ and E0(ŝ) = E0θθ̂(ŝ) + E0ϕϕ̂(ŝ), the scattered field is given by

Esct(r) =
1

(2π)3

∫
G0(r, r1)

·
[∫

ejp1·r1Tp(p1,k1) · E0(ŝ)d3p1

]
d3r1, (123)

where
Tp(p1,p2) =

∫
e−jp1·r1T(r1, r2)ejp2·r2 d3r1d3r2, (124)

is the Fourier transform of the transition dyadic. In the far-field region, the
dyadic Green’s function becomes

G0(r, r1) =
(
I− r̂⊗ r̂

)ejk1r
4πr

e−jk1r̂·r1 , (125)

in which case, Eq. (123) yields

Esct(r) =
ejk1r

4πr

(
I− r̂⊗ r̂

)
·Tp(k1r̂, k1ŝ) · E0(ŝ). (126)

On the other hand, the scattered field can be expressed in terms of the far-field
scattering dyadic

A(r̂, ŝ) =
∑

η,µ=θ,ϕ

[S(r̂, ŝ)]ηµη̂(r̂)⊗ µ̂(ŝ), (127)

where S(r̂, ŝ) is the amplitude scattering matrix, according to

Esct(r) =
ejk1r

r
A(r̂, ŝ) · E0(ŝ), r →∞. (128)

From Eqs. (126) and (128), the relation between the far-field scattering dyadic
and the transition dyadic is

A(r̂, ŝ) · E0(ŝ) =
1

4π
(I− r̂⊗ r̂) ·Tp(k1r̂, k1ŝ) · E0(ŝ). (129)

Putting successively E0(ŝ) = E0θθ̂(ŝ) and E0(ŝ) = E0ϕϕ̂(ŝ) in Eq. (129), we
obtain

A(r̂, ŝ) =
1

4π
(I− r̂⊗ r̂) ·Tp(k1r̂, k1ŝ) · (I− ŝ⊗ ŝ), (130)
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or equivalently,

A(r̂, ŝ) =
1

4π
TpT(k1r̂, k1ŝ), (131)

where TpT is the transverse component of the dyadic Tp involving only the
dyads η̂(r̂)⊗ µ̂(ŝ), with η, µ = θ, ϕ. In matrix form, we use the representations
(127) and

TpT(k1r̂, k1ŝ) =
∑

η,µ=θ,ϕ

[TpT(k1r̂, k1ŝ)]ηµη̂(r̂)⊗ µ̂(ŝ), (132)

to obtain
S(r̂, ŝ) =

1

4π
TpT(k1r̂, k1ŝ). (133)

Appendix 4. Characteristic waves method
Applying the operator ∇ × ∇ × −k21 to the Dyson equation for the coherent
field

〈
E
〉

= E0 + G0 M
〈
E
〉
, taking the Fourier transform of the resulting equa-

tion, using the computation rule F(∇× f)(p) = jp×F(f)(p), where F(f)(p) is
the Fourier transform of f = f(r) at p, assuming that for a statistical homoge-
neous medium, the dyadic mass operator is translation invariant, i.e., M(r, r′) =
M(r−r′), which implies (see Appendix 1) F(M)(p,p′) = (2π)3δ(p−p′)Mp(p),
we find [6]

[(p2 − k21)(I− p̂⊗ p̂)− k21p̂⊗ p̂−Mp(p)] ·Ep(p) = 0, (134)

with F(
〈
E
〉
)(p) = Ep(p). This equation, which can be interpreted as an eigen-

value equation, shows that Ep is nonzero only if

det[(p2 − k21)(I− p̂⊗ p̂)− k21p̂⊗ p̂−Mp(p)] = 0. (135)

Here, the notation det(X) should be understood as det(X), where X is the matrix
associated with the dyadic X. Putting p = Kp̂, the eigenvalues K = K(p̂)
satisfying the characteristic equation

det[(K2 − k21)(I− p̂⊗ p̂)− k21p̂⊗ p̂−Mp(Kp̂)] = 0, (136)

are the values of the effective wavenumber (propagation constant) for the spec-
ified direction of propagation p̂, while Ep(Kp̂) satisfying Eq. (134) are the
corresponding eigenvectors. In general, the dispersion equation (136) can have
several solutions. In order to insure that the radiation condition at infinity is
satisfied, only the solutions with a positive imaginary part are considered.

For the incidence propagation direction ŝ, let Kn = Kn(ŝ) be an eigenvalue
solving the dispersion equation (136) with p̂ = ŝ, and let En(ŝ) be the corre-
sponding eigenvector satisfying the eigenvalue equation (134) with p = Kn(ŝ)ŝ
(that is, with p = Kn(ŝ) and p̂ = ŝ). Then,

Ep(p) = (2π)3
∑

n

δ[p−Kn(ŝ)ŝ]En(ŝ) (137)
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satisfies Eq. (134), and consequently, the corresponding coherent field is
〈
E(r)

〉
=
∑

n

En(r, ŝ), (138)

En(r, ŝ) = ejKn (̂s)̂s·rEn(ŝ). (139)

The wave En(r, ŝ) propagating in the direction ŝ and satisfying the vector
Helmholtz equation with wavenunber Kn is the characteristic wave, while the
eigenvector En(ŝ), which is defined up to a multiplicative constant, is the char-
acteristic wave polarization associated with Kn.

For a discrete random medium with sparsely distributed particles, the ap-
proximation Kn ≈ k1, implying Mp(Knŝ) ≈Mp(k1ŝ), can be assumed. More-
over, in this case, the far-field approximation, according to which the fields in
the far zone are transverse, applies. Decomposing En(ŝ) into a longitudinal
and a transverse component EnL(ŝ) and EnT(ŝ), respectively, that is, En(ŝ) =

EnL(ŝ)+EnT(ŝ), with EnL(ŝ) = Ens(ŝ)ŝ and EnT(ŝ) = Enθ(ŝ)θ̂(ŝ)+Enϕ(ŝ)ϕ̂(ŝ),
the far-field approximation implies EnL(ŝ) = 0. This results may also follow
from the fact that in Eq. (134), k21 is much larger than the (p̂⊗ p̂)-, (p̂⊗ θ̂(p̂))-,
and (p̂⊗ ϕ̂(p̂))-components of the dyadic Mp(k1ŝ); in a matrix-form represen-
tation, the first equation in Eq. (134) yields Ens(ŝ) = 0 [6]. Consequently, the
matrix equation for the transverse part EnT(ŝ) is

[(K2
n − k21)I2 −MpT(k1ŝ)]

[
Enθ(ŝ)
Enϕ(ŝ)

]
= 0, (140)

where I2 is the two-dimensional identity matrix, 0 is the two-dimensional zero
vector, and MpT(k1ŝ) is the matrix associated with the transverse component
MpT(p) of the dyadic Mp(p). As shown in Ref. [6], for the direction of propaga-
tion ŝ, there are two effective wavenumbers K1(ŝ) and K2(ŝ), and accordingly,
two transverse characteristic waves with polarizations E1T(ŝ) and E1T(ŝ). Fur-
thermore, under the assumption Kn ≈ k1, we have K2

n − k21 ≈ 2k1(Kn − k1),
and the eigenvalue equation (140) yields

Kn

[
Enθ(ŝ)
Enϕ(ŝ)

]
=
[
k1I2 +

1

2k1
MpT(k1ŝ)

] [
Enθ(ŝ)
Enϕ(ŝ)

]
. (141)

Putting A = k1I2 + (1/2k1)MpT(k1ŝ) and xn = [Enθ(ŝ)Enϕ(ŝ)]T , so that Axn =
Knxn, we see that A2xn = KnAxn = K2

nxn, and that in general, Amxn = Km
n xn

for any m ≥ 0. This result implies exp(jKns)x = exp(jAs)x, that is,

ejKns

[
Enθ(ŝ)
Enϕ(ŝ)

]
= ej[k1I2+

1
2k1

MpT(k1ŝ)]s

[
Enθ(ŝ)
Enϕ(ŝ)

]
, (142)

with s = s(r,−ŝ) = ŝ · (r− rA). In dyadic representation, Eqs. (138), (139) and
(142) imply

〈
E(r)

〉
=

2∑

n=1

ejKn (̂s)s(r,−ŝ)ejKn (̂s)̂s·rAEnT(ŝ)

= ej[k1I+
1

2k1
MpT(k1ŝ)]s(r,−ŝ)〈E(rA)

〉
, (143)
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where
〈
E(rA)

〉
=
∑2
n=1 e

jKn (̂s)̂s·rAEnT(ŝ). The coherent field given by Eq. (143)
is a superposition of two plane electromagnetic waves propagating along the inci-
dence direction but with different wavenumbers. Thus, in general, the coherent
field is not a plane electromagnetic wave. That would be the case only if the
effective wavenumber with the smallest positive imaginary part were considered
(the characteristic wave with a larger imaginary parts is more strongly attenu-
ated in the medium, and so, can be neglected).

From the Dyson equation, the dyadic mass operator is given by Eq. (13) in
the coordinate space, and by

Mp(p) = n0Tp(p,p) (144)

in the Fourier space. In deriving Eq. (144), we used the fact that M is
translation invariant, and that Ti is a translational dyadic, i.e., Ti(r, r

′) =
T(r −Ri, r

′ −Ri). Taking into account the relationship between the far-field
scattering dyadic and the Fourier transform of the transition dyadic given by
Eq. (131), we obtain

MpT(k1ŝ) = n0TpT(k1ŝ, k1ŝ) = 4πn0A(ŝ, ŝ). (145)

Finally, substitution of Eq. (145) in Eq. (143) gives

〈
E(r)

〉
= exp

{
j
[
k1I +

2π

k1
n0A(ŝ, ŝ)

]
s(r,−ŝ)

}
·
〈
E(rA)

〉
, (146)

which is Eq. (46). In summary, the representation (146) has been obtained
under the assumptions and approximations which are representative of a dis-
crete random medium with a sparse concentration of particles: the far-field
approximation, the assumption that the positions of the particles are statisti-
cally independent, and the Twersky approximation (the last two assumptions
essentially, yield Eq. (144)). In addition, we supposed that the coherent field
propagates along the incidence direction, and that the effective wavenumber is
close to that of the background medium.

Appendix 5. Solution of the Foldy integral equa-
tion for the coherent field
To solve the Foldy integral equation for the coherent field,

Ec(r) = E0 (r) + n0

∫

D

g0(ri)A(r̂i, ŝ) ·Ec(Ri) d3Ri, (147)

we assume a particular form for Ec(r). Taking into account that the incident
field can be expressed as E0 (r) = exp[jk1s(r)]E0(rA), where s(r) stands for
s(r,−ŝ) hereinafter, we suppose that Ec(r) has a similar dependency on Ec(rA).
More specifically, we set

Ec(r) = exp
[
jX(ŝ)s(r)

]
·Ec(rA) (148)
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for some unknown dyadic X depending on the propagation direction of the
incident wave ŝ. Assuming Ec(rA) = E0(rA), and representing X as

X(ŝ) = k1I +
2π

k1
n0W(ŝ), (149)

gives

Ec(r) = exp
[
j
2π

k1
n0W(ŝ)s(r)

]
·E0 (r) , (150)

where W(ŝ) is now the unknown dyadic to be determined. Setting r = Ri in
Eq. (150) yields

Ec(Ri) = exp
[
j
2π

k1
n0W(ŝ)s(Ri)

]
·E0(Ri). (151)

Substituting Eq. (151) in Eq. (147), making the change of variable Ri = r + p,
which implies p = −ri and d3Ri = d3p, using the partial results

E0(Ri) = ejk1ŝ·pE0 (r) (152)

and

exp
[
j
2π

k1
n0W(ŝ)s(Ri)

]

= exp
[
j
2π

k1
n0W(ŝ)(p · ŝ)

]
· exp

[
j
2π

k1
n0W(ŝ)s(r)

]
, (153)

and finally, accounting of Eq. (150), we find

Ec(r) = E0 (r) + n0

{∫

D

ejk1p

p
ejk1ŝ·pA(−p̂, ŝ)

· exp
[
j
2π

k1
n0W(ŝ)(p · ŝ)

]
d3p

}
·Ec(r). (154)

The asymptotic expansion of a plane wave in spherical waves [12]

ejk1ŝ·p = j
2π

k1p

[
δ(ŝ + p̂)e−jk1p − δ(ŝ− p̂)ejk1p

]
, (155)

where δ(ŝ− p̂) is the solid-angle delta function, then yields

Ec(r) = E0 (r) + j
2π

k1
n0A(ŝ, ŝ)

·
{∫ s(r)

0

exp
[
−j2π
k1
n0W(ŝ)p

]
dp
}
·Ec(r). (156)

Left-multiplying the above equation by ŝ, using ŝ ·E0 (r) = 0 and ŝ ·A(ŝ, ŝ) = 0,
we obtain ŝ ·Ec(r) = 0. Left-multiplying now Eq. (150) by ŝ, using ŝ ·Ec(r) =
0, and employing a series representation of the dyadic exponential, we find
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ŝ·W(ŝ) = 0. We further make the assumption that W(ŝ)·ŝ = 0, or equivalently,
that W(ŝ) is a transverse dyadic, i.e.,

W(ŝ) =
∑

η,µ=θ,ϕ

[W(ŝ)]ηµη̂(ŝ)⊗ µ̂(ŝ). (157)

Because the coherent field is a transverse field, we write

Ec(r) = Ecθ(r)θ̂(ŝ) + Ecϕ(r)ϕ̂(ŝ), (158)

and define the two-element column vector Ec(r) according to Ec(r) = [Ecθ(r)Ecϕ(r)]T .
As a result, the matrix equation associated with the dyadic equation (156) is

Ec(r) = E0 (r) + j
2π

k1
n0A(ŝ, ŝ)

×
{∫ s(r)

0

exp
[
−j2π
k1
n0W(ŝ)p

]
dp
}
Ec(r), (159)

while the matrix equation associated with the dyadic equation (150) is

Ec(r) = exp
[
j
2π

k1
n0W(ŝ)s(r)

]
E0 (r) . (160)

The integral in Eq. (159) is
∫ s(r)

0

exp
[
−j2π
k1
n0W(ŝ)p

]
dp

=
(
j
2π

k1
n0

)−1
W−1(ŝ)

{
I2 − exp

[
−j2π
k1
n0W(ŝ)s(r)

]}
, (161)

and we obtain

Ec(r) = E0 (r) + A(ŝ, ŝ)W−1(ŝ)

×
{
I2 − exp

[
−j2π
k1
n0W(ŝ)s(r)

]}
Ec(r). (162)

Finally, by means of Eq. (160), we get

0 = [I2 − A(ŝ, ŝ)W−1(ŝ)]

×
{
exp
[
j
2π

k1
n0W(ŝ)s(r)

]
− I2

}
E0 (r) , (163)

and, since E0 (r) is arbitrary, the solution of Eq. (163) is W(ŝ) = A(ŝ, ŝ).
Applying this result to Eqs. (148) and (149), we find that the coherent field is
as in Eq. (46).
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